Chapter 4: Refraction of Light at Plane Surfaces

Reflection of Light

- **Definition:** The return of light into the same medium after striking a polished surface.
- Laws of Reflection:
 - 1. Angle of incidence = Angle of reflection.
 - 2. Incident ray, normal, and reflected ray lie in the same plane.

Refraction of Light

- **Definition:** The change in the direction of light when it passes from one transparent medium to another.
- Cause: Change in speed of light between two media.
- Observations:
 - 1. Rarer \rightarrow Denser: Light bends **towards** the normal.
 - 2. Denser \rightarrow Rarer: Light bends **away** from the normal.
 - 3. Normal incidence: No deviation.

Laws of Refraction (Snell's Law)

- 1. Incident ray, refracted ray, and normal lie in the same plane.
- 2. $\frac{\sin i}{\sin r}$ = constant

Refractive Index (µ)

- $\mu = \frac{Speed\ of\ light\ in\ vacuum\ (c)}{Speed\ of\ light\ in\ medium\ (V)}$
- No unit (it's a ratio).
- $\mu > 1$ implies light slows down in the medium.

Effect of Refraction on Light Properties

- **Speed** (**V**): Changes.
- **Frequency** (f): Constant.

- Wavelength (λ): Changes.
- Relation: V=f λ

Factors Affecting Refractive Index

- 1. Nature of medium
- 2. **Temperature** $\uparrow \rightarrow$ Refractive index \downarrow
- 3. Wavelength/Colour: μ violet > μ red

Principle of Reversibility of Light

• Light path is reversible in refraction.

Lateral Displacement

- Perpendicular shift of the emergent ray.
- Increases with:
 - 1. Thickness
 - 2. Angle of incidence
 - 3. Refractive index

Glass Slab & Multiple Images

- Thick slabs can show multiple, fading images.
- Images are due to multiple reflections and refractions.

Prism and Refraction

- **Deviation of light** depends on:
 - 1. Angle of incidence
 - 2. Material (μ)
 - 3. Angle of prism
 - 4. Colour: Violet deviates most.

Real vs Apparent Depth

- Objects in water/denser medium appear shallower.
- Depends on:
 - 1. Refractive index
 - 2. Medium's thickness
 - 3. Light colour

Refraction Phenomena in Daily Life

- Twinkling stars
- Early sunrise/late sunset
- Coin reappears in water
- Raised appearance of text under glass
- Shallow appearance of water tanks

Critical Angle & Total Internal Reflection (TIR)

- Critical Angle (C): Angle of incidence for 90° refraction.
- $\mu = \frac{1}{\sin \theta}$
- Conditions for TIR:
 - 1. Light must travel from **denser to rarer** medium.
 - 2. Angle of incidence > critical angle.

TIR in Prisms

- 1. **45°-90°-45° Prism:** Deviates light 90° or 180°.
- 2. Equilateral Prism (60°): Normal refraction + dispersion.
- 3. 30°-60°-90° Prism: TIR not always possible.

Applications of TIR

- Mirage: Illusion of water on roads.
- Diamond sparkle
- Cracked glass reflection

TIR vs Reflection from Plane Mirror

Total Internal Reflection	Plane Mirror Reflection
Only from denser to rarer	From any medium
100% light reflected	Partial reflection
No energy loss	Some energy lost

